Identification of Atrophy Patterns in Alzheimer's Disease Based on SVM Feature Selection and Anatomical Parcellation
نویسندگان
چکیده
In this paper, we propose a fully automated method to individually classify patients with Alzheimer’s disease (AD) and elderly control subjects based on anatomical magnetic resonance imaging (MRI). Our approach relies on the identification of gray matter (GM) atrophy patterns using whole-brain parcellation into anatomical regions and the extraction of GM characteristics in these regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support Vector Machine (SVM) for individual classification. We compare two different types of parcellations corresponding to two different levels of anatomical details. We validate our approach with two distinct groups of subjects: an initial cohort of 16 AD patients and 15 elderly controls and a second cohort of 17 AD patients and 13 controls. We used the first cohort for training and region selection and the second cohort for testing and obtained high classification accuracy (90%).
منابع مشابه
Hippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images
Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...
متن کاملOptimized Cortical Subdivision for Classification
In several studies, brain atrophy measured by cortical thickness has shown to be a meaningful biomarker for Alzheimer's disease. In t.his research field, t.he level of granularity at which values are compared is an important aspect. Vertexand voxel-based approaches can detect atrophy at a very fine scale, but are susceptible to noise from misregistrations and inter-subject differences in the po...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملDetection of Alzheimer\'s disease based on magnetic resonance imaging of the brain using support vector machine model
Background: Alzheimer's disease (AD) is the most common disorder of dementia, which has not been cured after its occurrence. AD progresses indiscernible, first destroy the structure of the brain and subsequently becomes clinically evident. Therefore, the timely and correct diagnosis of these structural changes in the brain is very important and it can prevent the disease or stop its progress. N...
متن کاملDTI and Structural MRI Classification in Alzheimer’s Disease
In this paper, we propose a fully automated method to individually classify patients with Alzheimer’s disease (AD) and elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We propose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach relies on whole-brain parcellation into 73 anatomical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008